tgmath.h (7)
PROLOG
This manual page is part of the POSIX Programmer's Manual. The Linux implementation of this interface may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface may not be implemented on Linux.NAME
tgmath.h --- type-generic macrosSYNOPSIS
#include <tgmath.h>
DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any conflict between the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2008 defers to the ISO C standard. The <tgmath.h> header shall include the headers <math.h> and <complex.h> and shall define several type-generic macros. Of the functions contained within the <math.h> and <complex.h> headers without an f (float) or l (long double) suffix, several have one or more parameters whose corresponding real type is double. For each such function, except modf(), j0(), j1(), jn(), y0(), y1(), and yn(), there shall be a corresponding type-generic macro. The parameters whose corresponding real type is double in the function synopsis are generic parameters. Use of the macro invokes a function whose corresponding real type and type domain are determined by the arguments for the generic parameters. Use of the macro invokes a function whose generic parameters have the corresponding real type determined as follows:- *
- First, if any argument for generic parameters has type long double, the type determined is long double.
- *
- Otherwise, if any argument for generic parameters has type double or is of integer type, the type determined is double.
- *
-
Otherwise, the type determined is
float.
For each unsuffixed function in the
<math.h>
header for which there is a function in the
<complex.h>
header with the same name except for a
c
prefix, the corresponding type-generic macro (for both functions) has
the same name as the function in the
<math.h>
header. The corresponding type-generic macro for
fabs()
and
cabs()
is
fabs().
If at least one argument for a generic parameter is complex, then use of the macro invokes a complex function; otherwise, use of the macro invokes a real function. For each unsuffixed function in the <math.h> header without a c-prefixed counterpart in the <complex.h> header, except for modf(), j0(), j1(), jn(), y0(), y1(), and yn(), the corresponding type-generic macro has the same name as the function. These type-generic macros are:
<math.h> Function <complex.h> Function Type-Generic Macro acos() cacos() acos() asin() casin() asin() atan() catan() atan() acosh() cacosh() acosh() asinh() casinh() asinh() atanh() catanh() atanh() cos() ccos() cos() sin() csin() sin() tan() ctan() tan() cosh() ccosh() cosh() sinh() csinh() sinh() tanh() ctanh() tanh() exp() cexp() exp() log() clog() log() pow() cpow() pow() sqrt() csqrt() sqrt() fabs() cabs() fabs() -
atan2() cbrt() ceil() copysign() erf() erfc() exp2() expm1() fdim() floor()
fma() fmax() fmin() fmod() frexp() hypot() ilogb() ldexp() lgamma() llrint() llround() log10() log1p() log2() logb() lrint() lround() nearbyint() nextafter() nexttoward() remainder() remquo() rint() round() scalbln() scalbn() tgamma() trunc()
- carg() cimag() conj() cproj() creal()
-
The following sections are informative.
APPLICATION USAGE
With the declarations:
-
#include <tgmath.h> int n; float f; double d; long double ld; float complex fc; double complex dc; long double complex ldc;
Macro | Use Invokes |
exp(n) | exp(n), the function |
acosh(f) | acoshf(f) |
sin(d) | sin(d), the function |
atan(ld) | atanl(ld) |
log(fc) | clogf(fc) |
sqrt(dc) | csqrt(dc) |
pow(ldc,f) | cpowl(ldc, f) |
remainder(n,n) | remainder(n, n), the function |
nextafter(d,f) | nextafter(d, f), the function |
nexttoward(f,ld) | nexttowardf(f, ld) |
copysign(n,ld) | copysignl(n, ld) |
ceil(fc) | Undefined behavior |
rint(dc) | Undefined behavior |
fmax(ldc,ld) | Undefined behavior |
carg(n) | carg(n), the function |
cproj(f) | cprojf(f) |
creal(d) | creal(d), the function |
cimag(ld) | cimagl(ld) |
cabs(fc) | cabsf(fc) |
carg(dc) | carg(dc), the function |
cproj(ldc) | cprojl(ldc) |
RATIONALE
Type-generic macros allow calling a function whose type is determined by the argument type, as is the case for C operators such as '+' and '*'. For example, with a type-generic cos() macro, the expression cos((float)x) will have type float. This feature enables writing more portably efficient code and alleviates need for awkward casting and suffixing in the process of porting or adjusting precision. Generic math functions are a widely appreciated feature of Fortran. The only arguments that affect the type resolution are the arguments corresponding to the parameters that have type double in the synopsis. Hence the type of a type-generic call to nexttoward(), whose second parameter is long double in the synopsis, is determined solely by the type of the first argument. The term ``type-generic'' was chosen over the proposed alternatives of intrinsic and overloading. The term is more specific than intrinsic, which already is widely used with a more general meaning, and reflects a closer match to Fortran's generic functions than to C++ overloading. The macros are placed in their own header in order not to silently break old programs that include the <math.h> header; for example, with:
-
printf ("%e", sin(x))
-
#undef sqrt #define sqrt(x) __BUILTIN_GENERIC_sqrt(x)
FUTURE DIRECTIONS
None.SEE ALSO
<math.h>, <complex.h> The System Interfaces volume of POSIX.1-2008, cabs(), fabs(), modf()COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2013 Edition, Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Specifications Issue 7, Copyright (C) 2013 by the Institute of Electrical and Electronics Engineers, Inc and The Open Group. (This is POSIX.1-2008 with the 2013 Technical Corrigendum 1 applied.) In the event of any discrepancy between this version and the original IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The original Standard can be obtained online at www.unix.org/online.html .Any typographical or formatting errors that appear in this page are most likely to have been introduced during the conversion of the source files to man page format. To report such errors, see www.kernel.org/doc/man-pages/reporting_bugs.html .