next (3)
NAME
next, nextto - invoke superclass method implementationsSYNOPSIS
package require TclOO next ?arg ...? nextto class ?arg ...?
DESCRIPTION
The next command is used to call implementations of a method by a class, superclass or mixin that are overridden by the current method. It can only be used from within a method. It is also used within filters to indicate the point where a filter calls the actual implementation (the filter may decide to not go along the chain, and may process the results of going along the chain of methods as it chooses). The result of the next command is the result of the next method in the method chain; if there are no further methods in the method chain, the result of next will be an error. The arguments, arg, to next are the arguments to pass to the next method in the chain.
The nextto command is the same as the next command, except that it takes an additional class argument that identifies a class whose implementation of the current method chain (see info object call) should be used; the method implementation selected will be the one provided by the given class, and it must refer to an existing non-filter invocation that lies further along the chain than the current implementation.
THE METHOD CHAIN
When a method of an object is invoked, things happen in several stages:
- [1]
- The structure of the object, its class, superclasses, filters, and mixins, are examined to build a method chain, which contains a list of method implementations to invoke.
- [2]
- The first method implementation on the chain is invoked.
- [3]
- If that method implementation invokes the next command, the next method implementation is invoked (with its arguments being those that were passed to next).
- [4]
- The result from the overall method call is the result from the outermost method implementation; inner method implementations return their results through next.
- [5]
- The method chain is cached for future use.
METHOD SEARCH ORDER
When constructing the method chain, method implementations are searched for in the following order:
- [1]
- In the classes mixed into the object, in class traversal order. The list of mixins is checked in natural order.
- [2]
- In the classes mixed into the classes of the object, with sources of mixing in being searched in class traversal order. Within each class, the list of mixins is processed in natural order.
- [3]
- In the object itself.
- [4]
- In the object's class.
- [5]
- In the superclasses of the class, following each superclass in a depth-first fashion in the natural order of the superclass list.
Any particular method implementation always comes as late in the resulting list of implementations as possible; this means that if some class, A, is both mixed into a class, B, and is also a superclass of B, the instances of B will always treat A as a superclass from the perspective of inheritance. This is true even when the multiple inheritance is processed indirectly.
FILTERS
When an object has a list of filter names set upon it, or is an instance of a class (or has mixed in a class) that has a list of filter names set upon it, before every invocation of any method the filters are processed. Filter implementations are found in class traversal order, as are the lists of filter names (each of which is traversed in natural list order). Explicitly invoking a method used as a filter will cause that method to be invoked twice, once as a filter and once as a normal method.
Each filter should decide for itself whether to permit the execution to go forward to the proper implementation of the method (which it does by invoking the next command as filters are inserted into the front of the method call chain) and is responsible for returning the result of next.
Filters are invoked when processing an invokation of the unknown method because of a failure to locate a method implementation, but not when invoking either constructors or destructors. (Note however that the destroy method is a conventional method, and filters are invoked as normal when it is called.)
EXAMPLES
This example demonstrates how to use the next command to call the (super)class's implementation of a method. The script:
-
oo::class create theSuperclass { method example {args} { puts "in the superclass, args = $args" } } oo::class create theSubclass { superclass theSuperclass method example {args} { puts "before chaining from subclass, args = $args" next a {*}$args b next pureSynthesis puts "after chaining from subclass" } } theSubclass create obj oo::objdefine obj method example args { puts "per-object method, args = $args" next x {*}$args y next } obj example 1 2 3
prints the following:
-
per-object method, args = 1 2 3 before chaining from subclass, args = x 1 2 3 y in the superclass, args = a x 1 2 3 y b in the superclass, args = pureSynthesis after chaining from subclass before chaining from subclass, args = in the superclass, args = a b in the superclass, args = pureSynthesis after chaining from subclass
This example demonstrates how to build a simple cache class that applies memoization to all the method calls of the objects it is mixed into, and shows how it can make a difference to computation times:
-
oo::class create cache { filter Memoize method Memoize args { # Do not filter the core method implementations if {[lindex [self target] 0] eq "::oo::object"} { return [next {*}$args] } # Check if the value is already in the cache my variable ValueCache set key [self target],$args if {[info exist ValueCache($key)]} { return $ValueCache($key) } # Compute value, insert into cache, and return it return [set ValueCache($key) [next {*}$args]] } method flushCache {} { my variable ValueCache unset ValueCache # Skip the caching return -level 2 "" } } oo::object create demo oo::objdefine demo { mixin cache method compute {a b c} { after 3000 ;# Simulate deep thought return [expr {$a + $b * $c}] } method compute2 {a b c} { after 3000 ;# Simulate deep thought return [expr {$a * $b + $c}] } } puts [demo compute 1 2 3] -> prints "7" after delay puts [demo compute2 4 5 6] -> prints "26" after delay puts [demo compute 1 2 3] -> prints "7" instantly puts [demo compute2 4 5 6] -> prints "26" instantly puts [demo compute 4 5 6] -> prints "34" after delay puts [demo compute 4 5 6] -> prints "34" instantly puts [demo compute 1 2 3] -> prints "7" instantly demo flushCache puts [demo compute 1 2 3] -> prints "7" after delay