Set (3)
NAME
Set - Sets over ordered types.Module
Module SetDocumentation
Module
Set
:
sig end
Sets over ordered types.
This module implements the set data structure, given a total ordering function over the set elements. All operations over sets are purely applicative (no side-effects). The implementation uses balanced binary trees, and is therefore reasonably efficient: insertion and membership take time logarithmic in the size of the set, for instance.
The Make functor constructs implementations for any type, given a compare function. For instance: module IntPairs = struct type t = int * int let compare (x0,y0) (x1,y1) = match Pervasives.compare x0 x1 with 0 -> Pervasives.compare y0 y1 | c -> c end module PairsSet = Set.Make(IntPairs) let m = PairsSet.(empty |> add (2,3) |> add (5,7) |> add (11,13))
This creates a new module
PairsSet
, with a new type
PairsSet.t
of sets of
int * int
.
module type OrderedType =
sig end
Input signature of the functor
Set.Make
.
module type S =
sig end
Output signature of the functor
Set.Make
.
module Make :
functor (Ord : OrderedType) -> sig end
Functor building an implementation of the set structure
given a totally ordered type.