PDL::Minuit (3)
Leading comments
Automatically generated by Pod::Man 4.09 (Pod::Simple 3.35) Standard preamble: ========================================================================
NAME
PDL::Minuit -- a PDL interface to the Minuit libraryDESCRIPTION
This package implements an interface to the Minuit minimization routines (part of theSYNOPSIS
A basic fit with Minuit will call three functions in this package. First, a basic initialization is done with mn_init(). Then, the parameters are defined via the function mn_def_pars(), which allows setting upper and lower bounds. Then the function mn_excm() can be used to issue many Minuit commands, including simplex and migrad minimization algorithms (see Minuit manual for more details).See the test file minuit.t in the test (t/) directory for a basic example.
FUNCTIONS
mninit
Signature: (longlong a();longlong b(); longlong c())
info not available
mninit does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
mn_abre
Signature: (longlong l(); char* nombre; char* mode)
info not available
mn_abre does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
mn_cierra
Signature: (longlong l())
info not available
mn_cierra does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
mnparm
Signature: (longlong a(); double b(); double c(); double d(); double e(); longlong [o] ia(); char* str)
info not available
mnparm does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
mnexcm
Signature: (double a(n); longlong ia(); longlong [o] ib(); char* str; SV* function; IV numelem)
info not available
mnexcm does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
mnpout
Signature: (longlong ia(); double [o] a(); double [o] b(); double [o] c(); double [o] d();longlong [o] ib(); SV* str)
info not available
mnpout does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
mnstat
Signature: (double [o] a(); double [o] b(); double [o] c(); longlong [o] ia(); longlong [o] ib(); longlong [o] ic())
info not available
mnstat does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
mnemat
Signature: (double [o] mat(n,n))
info not available
mnemat does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
mnerrs
Signature: (longlong ia(); double [o] a(); double [o] b(); double [o] c(); double [o] d())
info not available
mnerrs does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
mncont
Signature: (longlong ia(); longlong ib(); longlong ic(); double [o] a(n); double [o] b(n); longlong [o] id(); SV* function; IV numelem)
info not available
mncont does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
mn_init()
The function mn_init() does the basic initialization of the fit. The first argument has to be a reference to the function to be minimized. The function to be minimized has to receive five arguments ($npar,$grad,$fval,$xval,$iflag). The first is the number of parameters currently variable. The second is the gradient of the function (which is not necessarily used, see the Minuit documentation). The third is the current value of the function. The fourth is a piddle with the values of the parameters. The fifth is an integer flag, which indicates what the function is supposed to calculate. The function has to return the values ($fval,$grad), the function value and the function gradient.There are three optional arguments to mn_init(). By default, the output of Minuit will come through
Usage:
mn_init($function_ref,{Log=>$logfile,Title=>$title,Unit=>$unit})
Example:
mn_init(\&my_function); #same as above but outputting to a file 'log.out'. #title for fit is 'My fit' mn_init(\&my_function, {Log => 'log.out', Title => 'My fit'}); sub my_function{ # the five variables input to the function to be minimized # xval is a piddle containing the current values of the parameters my ($npar,$grad,$fval,$xval,$iflag) = @_; # Here is code computing the value of the function # and potentially also its gradient # ...... # return the two variables. If no gradient is being computed # just return the $grad that came as input return ($fval, $grad); }
mn_def_pars()
The function mn_def_pars() defines the initial values of the parameters of the function to be minimized and the value of the initial steps around these values that the minimizer will use for the first variations of the parameters in the search for the minimum. There are several optional arguments. One allows assigning names to these parameters which otherwise get names (Par_0, Par_1,....,Par_n) by default. Another two arguments can give lower and upper bounds for the parameters via two piddles. If the lower and upper bound for a given parameter are both equal to 0 then the parameter is unbound. By default these lower and upper bound piddles are set to zeroes(n), where n is the number of parameters, i.e. the parameters are unbound by default.The function needs two input variables: a piddle giving the initial values of the parameters and another piddle giving the initial steps. An optional reference to a perl array with the variable names can be passed, as well as piddles with upper and lower bounds for the parameters (see example below).
It returns an integer variable which is 0 upon success.
Usage:
$iflag = mn_def_pars($pars, $steps,{Names => \@names, Lower_bounds => $lbounds, Upper_bounds => $ubounds})
Example:
#initial parameter values my $pars = pdl(2.5,3.0); #steps my $steps = pdl(0.3,0.5); #parameter names my @names = ('intercept','slope'); #use mn_def_pars with default parameter names (Par_0,Par_1,...) my $iflag = mn_def_pars($pars,$steps); #use of mn_def_pars explicitly specify parameter names $iflag = mn_def_pars($pars,$steps,{Names => \@names}); # specify lower and upper bounds for the parameters. # The example below leaves parameter 1 (intercept) unconstrained # and constrains parameter 2 (slope) to be between 0 and 100 my $lbounds = pdl(0, 0); my $ubounds = pdl(0, 100); $iflag = mn_def_pars($pars,$steps,{Names => \@names, Lower_bounds => $lbounds, Upper_bounds => $ubounds}}); #same as above because $lbounds is by default zeroes(n) $iflag = mn_def_pars($pars,$steps,{Names => \@names, Upper_bounds => $ubounds}});
mn_excm()
The function mn_excm() executes a Minuit command passed as a string. The first argument is the command string and an optional second argument is a piddle with arguments to the command. The available commands are listed in Chapter 4 of the Minuit manual (see url below).It returns an integer variable which is 0 upon success.
Usage:
$iflag = mn_excm($command_string, {$arglis})
Example:
#start a simplex minimization my $iflag = mn_excm('simplex'); #same as above but specify the maximum allowed numbers of #function calls in the minimization my $arglist = pdl(1000); $iflag = mn_excm('simplex',$arglist); #start a migrad minimization $iflag = mn_excm('migrad') #set Minuit strategy in order to get the most reliable results $arglist = pdl(2) $iflag = mn_excm('set strategy',$arglist); # each command can be specified by a minimal string that uniquely # identifies it (see Chapter 4 of Minuit manual). The comannd above # is equivalent to: $iflag = mn_excm('set stra',$arglis);
mn_pout()
The function mn_pout() gets the current value of a parameter. It takes as input the parameter number and returns an array with the parameter value, the current estimate of its uncertainty (0 if parameter is constant), lower bound on the parameter, if any (otherwise 0), upper bound on the parameter, if any (otherwise 0), integer flag (which is equal to the parameter number if variable, zero if the parameter is constant and negative if parameter is not defined) and the parameter name.Usage:
($val,$err,$bnd1,$bnd2,$ivarbl,$par_name) = mn_pout($par_number);
mn_stat()
The function mn_stat() gets the current status of the minimization. It returns an array with the best function value found so far, the estimated vertical distance remaining to minimum, the value ofUsage:
($fmin,$fedm,$errdef,$npari,$nparx,$istat) = mn_stat();
mn_emat()
The function mn_emat returns the covariance matrix as a piddle.Usage:
$emat = mn_emat();
mn_err()
The function mn_err() returns the current existing values for the error in the fitted parameters. It returns an array with the positive error, the negative error, the ``parabolic'' parameter error from the error matrix and the global correlation coefficient, which is a number between 0 and 1 which gives the correlation between the requested parameter and that linear combination of all other parameters which is most strongly correlated with it. Unless the command 'Usage:
($eplus,$eminus,$eparab,$globcc) = mn_err($par_number);
mn_contour()
The function mn_contour() finds contours of the function being minimized with respect to two chosen parameters. The contour level is given by F_min +The function takes as input the parameter numbers with respect to which the contour is to be determined (two) and the number of points $npt required on the contour (>4). It returns an array with piddles $xpt,$ypt containing the coordinates of the contour and a variable $nfound indicating the number of points actually found in the contour. If all goes well $nfound will be equal to $npt, but it can be negative if the input arguments are not valid, zero if less than four points have been found or <$npt if the program could not find $npt points.
Usage:
($xpt,$ypt,$nfound) = mn_contour($par_number_1,$par_number_2,$npt)
SEE ALSO
The Minuit documentation is online at
wwwasdoc.web.cern.ch/wwwasdoc/minuit/minmain.html