Bigarray.Genarray (3)
NAME
Bigarray.Genarray - no descriptionModule
Module Bigarray.GenarrayDocumentation
Module
Genarray
:
sig end
type
('a, 'b, 'c)
t
The type Genarray.t is the type of big arrays with variable numbers of dimensions. Any number of dimensions between 1 and 16 is supported.
The three type parameters to Genarray.t identify the array element kind and layout, as follows:
-the first parameter, 'a , is the OCaml type for accessing array elements ( float , int , int32 , int64 , nativeint );
-the second parameter, 'b , is the actual kind of array elements ( float32_elt , float64_elt , int8_signed_elt , int8_unsigned_elt , etc);
-the third parameter,
'c
, identifies the array layout
(
c_layout
or
fortran_layout
).
For instance,
(float, float32_elt, fortran_layout) Genarray.t
is the type of generic big arrays containing 32-bit floats
in Fortran layout; reads and writes in this array use the
OCaml type
float
.
val create
:
('a, 'b) Bigarray.kind ->
'c Bigarray.layout -> int array -> ('a, 'b, 'c) t
Genarray.create kind layout dimensions
returns a new big array
whose element kind is determined by the parameter
kind
(one of
float32
,
float64
,
int8_signed
, etc) and whose layout is
determined by the parameter
layout
(one of
c_layout
or
fortran_layout
). The
dimensions
parameter is an array of
integers that indicate the size of the big array in each dimension.
The length of
dimensions
determines the number of dimensions
of the bigarray.
For instance, Genarray.create int32 c_layout [|4;6;8|] returns a fresh big array of 32-bit integers, in C layout, having three dimensions, the three dimensions being 4, 6 and 8 respectively.
Big arrays returned by Genarray.create are not initialized: the initial values of array elements is unspecified.
Genarray.create
raises
Invalid_argument
if the number of dimensions
is not in the range 1 to 16 inclusive, or if one of the dimensions
is negative.
val num_dims
:
('a, 'b, 'c) t -> int
Return the number of dimensions of the given big array.
val dims
:
('a, 'b, 'c) t -> int array
Genarray.dims a
returns all dimensions of the big array
a
,
as an array of integers of length
Genarray.num_dims a
.
val nth_dim
:
('a, 'b, 'c) t -> int -> int
Genarray.nth_dim a n
returns the
n
-th dimension of the
big array
a
. The first dimension corresponds to
n = 0
;
the second dimension corresponds to
n = 1
; the last dimension,
to
n = Genarray.num_dims a - 1
.
Raise
Invalid_argument
if
n
is less than 0 or greater or equal than
Genarray.num_dims a
.
val kind
:
('a, 'b, 'c) t -> ('a, 'b) Bigarray.kind
Return the kind of the given big array.
val layout
:
('a, 'b, 'c) t -> 'c Bigarray.layout
Return the layout of the given big array.
val change_layout
:
('a, 'b, 'c) t ->
'd Bigarray.layout -> ('a, 'b, 'd) t
Genarray.change_layout a layout
returns a bigarray with the
specified
layout
, sharing the data with
a
(and hence having
the same dimensions as
a
). No copying of elements is involved: the
new array and the original array share the same storage space.
The dimensions are reversed, such that
get v [| a; b |]
in
C layout becomes
get v [| b+1; a+1 |]
in Fortran layout.
Since
4.04.0
val size_in_bytes
:
('a, 'b, 'c) t -> int
size_in_bytes a
is the number of elements in
a
multiplied
by
a
's
Bigarray.kind_size_in_bytes
.
Since
4.03.0
val get
:
('a, 'b, 'c) t -> int array -> 'a
Read an element of a generic big array. Genarray.get a [|i1; ...; iN|] returns the element of a whose coordinates are i1 in the first dimension, i2 in the second dimension, ..., iN in the N -th dimension.
If a has C layout, the coordinates must be greater or equal than 0 and strictly less than the corresponding dimensions of a . If a has Fortran layout, the coordinates must be greater or equal than 1 and less or equal than the corresponding dimensions of a . Raise Invalid_argument if the array a does not have exactly N dimensions, or if the coordinates are outside the array bounds.
If
N > 3
, alternate syntax is provided: you can write
a.{i1, i2, ..., iN}
instead of
Genarray.get a [|i1; ...; iN|]
.
(The syntax
a.{...}
with one, two or three coordinates is
reserved for accessing one-, two- and three-dimensional arrays
as described below.)
val set
:
('a, 'b, 'c) t -> int array -> 'a -> unit
Assign an element of a generic big array. Genarray.set a [|i1; ...; iN|] v stores the value v in the element of a whose coordinates are i1 in the first dimension, i2 in the second dimension, ..., iN in the N -th dimension.
The array a must have exactly N dimensions, and all coordinates must lie inside the array bounds, as described for Genarray.get ; otherwise, Invalid_argument is raised.
If
N > 3
, alternate syntax is provided: you can write
a.{i1, i2, ..., iN} <- v
instead of
Genarray.set a [|i1; ...; iN|] v
.
(The syntax
a.{...} <- v
with one, two or three coordinates is
reserved for updating one-, two- and three-dimensional arrays
as described below.)
val sub_left
:
('a, 'b, Bigarray.c_layout) t ->
int -> int -> ('a, 'b, Bigarray.c_layout) t
Extract a sub-array of the given big array by restricting the first (left-most) dimension. Genarray.sub_left a ofs len returns a big array with the same number of dimensions as a , and the same dimensions as a , except the first dimension, which corresponds to the interval [ofs ... ofs + len - 1] of the first dimension of a . No copying of elements is involved: the sub-array and the original array share the same storage space. In other terms, the element at coordinates [|i1; ...; iN|] of the sub-array is identical to the element at coordinates [|i1+ofs; ...; iN|] of the original array a .
Genarray.sub_left
applies only to big arrays in C layout.
Raise
Invalid_argument
if
ofs
and
len
do not designate
a valid sub-array of
a
, that is, if
ofs < 0
, or
len < 0
,
or
ofs + len > Genarray.nth_dim a 0
.
val sub_right
:
('a, 'b, Bigarray.fortran_layout) t ->
int -> int -> ('a, 'b, Bigarray.fortran_layout) t
Extract a sub-array of the given big array by restricting the last (right-most) dimension. Genarray.sub_right a ofs len returns a big array with the same number of dimensions as a , and the same dimensions as a , except the last dimension, which corresponds to the interval [ofs ... ofs + len - 1] of the last dimension of a . No copying of elements is involved: the sub-array and the original array share the same storage space. In other terms, the element at coordinates [|i1; ...; iN|] of the sub-array is identical to the element at coordinates [|i1; ...; iN+ofs|] of the original array a .
Genarray.sub_right
applies only to big arrays in Fortran layout.
Raise
Invalid_argument
if
ofs
and
len
do not designate
a valid sub-array of
a
, that is, if
ofs < 1
, or
len < 0
,
or
ofs + len > Genarray.nth_dim a (Genarray.num_dims a - 1)
.
val slice_left
:
('a, 'b, Bigarray.c_layout) t ->
int array -> ('a, 'b, Bigarray.c_layout) t
Extract a sub-array of lower dimension from the given big array by fixing one or several of the first (left-most) coordinates. Genarray.slice_left a [|i1; ... ; iM|] returns the 'slice' of a obtained by setting the first M coordinates to i1 , ..., iM . If a has N dimensions, the slice has dimension N - M , and the element at coordinates [|j1; ...; j(N-M)|] in the slice is identical to the element at coordinates [|i1; ...; iM; j1; ...; j(N-M)|] in the original array a . No copying of elements is involved: the slice and the original array share the same storage space.
Genarray.slice_left
applies only to big arrays in C layout.
Raise
Invalid_argument
if
M >= N
, or if
[|i1; ... ; iM|]
is outside the bounds of
a
.
val slice_right
:
('a, 'b, Bigarray.fortran_layout) t ->
int array -> ('a, 'b, Bigarray.fortran_layout) t
Extract a sub-array of lower dimension from the given big array by fixing one or several of the last (right-most) coordinates. Genarray.slice_right a [|i1; ... ; iM|] returns the 'slice' of a obtained by setting the last M coordinates to i1 , ..., iM . If a has N dimensions, the slice has dimension N - M , and the element at coordinates [|j1; ...; j(N-M)|] in the slice is identical to the element at coordinates [|j1; ...; j(N-M); i1; ...; iM|] in the original array a . No copying of elements is involved: the slice and the original array share the same storage space.
Genarray.slice_right
applies only to big arrays in Fortran layout.
Raise
Invalid_argument
if
M >= N
, or if
[|i1; ... ; iM|]
is outside the bounds of
a
.
val blit
:
('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit
Copy all elements of a big array in another big array.
Genarray.blit src dst
copies all elements of
src
into
dst
. Both arrays
src
and
dst
must have the same number of
dimensions and equal dimensions. Copying a sub-array of
src
to a sub-array of
dst
can be achieved by applying
Genarray.blit
to sub-array or slices of
src
and
dst
.
val fill
:
('a, 'b, 'c) t -> 'a -> unit
Set all elements of a big array to a given value.
Genarray.fill a v
stores the value
v
in all elements of
the big array
a
. Setting only some elements of
a
to
v
can be achieved by applying
Genarray.fill
to a sub-array
or a slice of
a
.
val map_file
:
Unix.file_descr ->
?pos:int64 ->
('a, 'b) Bigarray.kind ->
'c Bigarray.layout -> bool -> int array -> ('a, 'b, 'c) t
Memory mapping of a file as a big array. Genarray.map_file fd kind layout shared dims returns a big array of kind kind , layout layout , and dimensions as specified in dims . The data contained in this big array are the contents of the file referred to by the file descriptor fd (as opened previously with Unix.openfile , for example). The optional pos parameter is the byte offset in the file of the data being mapped; it defaults to 0 (map from the beginning of the file).
If shared is true , all modifications performed on the array are reflected in the file. This requires that fd be opened with write permissions. If shared is false , modifications performed on the array are done in memory only, using copy-on-write of the modified pages; the underlying file is not affected.
Genarray.map_file
is much more efficient than reading
the whole file in a big array, modifying that big array,
and writing it afterwards.
To adjust automatically the dimensions of the big array to the actual size of the file, the major dimension (that is, the first dimension for an array with C layout, and the last dimension for an array with Fortran layout) can be given as -1 . Genarray.map_file then determines the major dimension from the size of the file. The file must contain an integral number of sub-arrays as determined by the non-major dimensions, otherwise Failure is raised.
If all dimensions of the big array are given, the file size is matched against the size of the big array. If the file is larger than the big array, only the initial portion of the file is mapped to the big array. If the file is smaller than the big array, the file is automatically grown to the size of the big array. This requires write permissions on fd .
Array accesses are bounds-checked, but the bounds are determined by the initial call to map_file . Therefore, you should make sure no other process modifies the mapped file while you're accessing it, or a SIGBUS signal may be raised. This happens, for instance, if the file is shrunk.
This function raises
Sys_error
in the case of any errors from the
underlying system calls.
Invalid_argument
or
Failure
may be
raised in cases where argument validation fails.