openssl-pkeyutl (1)
Leading comments
Automatically generated by Pod::Man 4.09 (Pod::Simple 3.35) Standard preamble: ========================================================================
NAME
openssl-pkeyutl, pkeyutl - public key algorithm utilitySYNOPSIS
openssl pkeyutl [-help] [-in file] [-out file] [-sigfile file] [-inkey file] [-keyform PEM|DER|ENGINE] [-passin arg] [-peerkey file] [-peerform PEM|DER|ENGINE] [-pubin] [-certin] [-rev] [-sign] [-verify] [-verifyrecover] [-encrypt] [-decrypt] [-derive] [-kdf algorithm] [-kdflen length] [-pkeyopt opt:value] [-hexdump] [-asn1parse] [-engine id] [-engine_impl]DESCRIPTION
The pkeyutl command can be used to perform public key operations using any supported algorithm.OPTIONS
- -help
- Print out a usage message.
- -in filename
- This specifies the input filename to read data from or standard input if this option is not specified.
- -out filename
- specifies the output filename to write to or standard output by default.
- -sigfile file
- Signature file, required for verify operations only
- -inkey file
- the input key file, by default it should be a private key.
- -keyform PEM|DER|ENGINE
-
the key format PEM, DERorENGINE.Default isPEM.
- -passin arg
-
the input key password source. For more information about the format of arg
see the PASS PHRASE ARGUMENTSsection in openssl(1).
- -peerkey file
- the peer key file, used by key derivation (agreement) operations.
- -peerform PEM|DER|ENGINE
-
the peer key format PEM, DERorENGINE.Default isPEM.
- -pubin
- the input file is a public key.
- -certin
- the input is a certificate containing a public key.
- -rev
- reverse the order of the input buffer. This is useful for some libraries (such as CryptoAPI) which represent the buffer in little endian format.
- -sign
- sign the input data and output the signed result. This requires a private key.
- -verify
- verify the input data against the signature file and indicate if the verification succeeded or failed.
- -verifyrecover
- verify the input data and output the recovered data.
- -encrypt
- encrypt the input data using a public key.
- -decrypt
- decrypt the input data using a private key.
- -derive
- derive a shared secret using the peer key.
- -kdf algorithm
-
Use key derivation function algorithm. The supported algorithms are
at present TLS1-PRFandHKDF. Note: additional parameters and theKDFoutput length will normally have to be set for this to work. See EVP_PKEY_CTX_set_hkdf_md(3) and EVP_PKEY_CTX_set_tls1_prf_md(3) for the supported string parameters of each algorithm.
- -kdflen length
-
Set the output length for KDF.
- -pkeyopt opt:value
-
Public key options specified as opt:value. See NOTESbelow for more details.
- -hexdump
- hex dump the output data.
- -asn1parse
-
asn1parse the output data, this is useful when combined with the
-verifyrecover option when an ASN1structure is signed.
- -engine id
- specifying an engine (by its unique id string) will cause pkeyutl to attempt to obtain a functional reference to the specified engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.
- -engine_impl
- When used with the -engine option, it specifies to also use engine id for crypto operations.
NOTES
The operations and options supported vary according to the key algorithm and its implementation. The OpenSSL operations and options are indicated below.Unless otherwise mentioned all algorithms support the digest:alg option which specifies the digest in use for sign, verify and verifyrecover operations. The value alg should represent a digest name as used in the EVP_get_digestbyname() function for example sha1. This value is used only for sanity-checking the lengths of data passed in to the pkeyutl and for creating the structures that make up the signature (e.g. DigestInfo in
In other words, if the value of digest is sha1 the input should be 20 bytes long binary encoding of
RSA ALGORITHM
The- rsa_padding_mode:mode
-
This sets the RSApadding mode. Acceptable values for mode are pkcs1 for PKCS#1 padding, sslv23 for SSLv23 padding, none for no padding, oaep forOAEPmode, x931 for X9.31 mode and pss forPSS.
In PKCS#1 padding if the message digest is not set then the supplied data is signed or verified directly instead of using a DigestInfo structure. If a digest is set then the a DigestInfo structure is used and its the length must correspond to the digest type.
For oaep mode only encryption and decryption is supported.
For x931 if the digest type is set it is used to format the block data otherwise the first byte is used to specify the X9.31 digest
ID.Sign, verify and verifyrecover are can be performed in this mode.For pss mode only sign and verify are supported and the digest type must be specified.
- rsa_pss_saltlen:len
-
For pss mode only this option specifies the salt length. Two special values
are supported: -1 sets the salt length to the digest length. When signing -2
sets the salt length to the maximum permissible value. When verifying -2 causes
the salt length to be automatically determined based on the PSSblock structure.
DSA ALGORITHM
TheDH ALGORITHM
TheEC ALGORITHM
TheX25519 ALGORITHM
The X25519 algorithm supports key derivation only. Currently there are no additional options.EXAMPLES
Sign some data using a private key:
openssl pkeyutl -sign -in file -inkey key.pem -out sig
Recover the signed data (e.g. if an
openssl pkeyutl -verifyrecover -in sig -inkey key.pem
Verify the signature (e.g. a
openssl pkeyutl -verify -in file -sigfile sig -inkey key.pem
Sign data using a message digest value (this is currently only valid for
openssl pkeyutl -sign -in file -inkey key.pem -out sig -pkeyopt digest:sha256
Derive a shared secret value:
openssl pkeyutl -derive -inkey key.pem -peerkey pubkey.pem -out secret
Hexdump 48 bytes of
openssl pkeyutl -kdf TLS1-PRF -kdflen 48 -pkeyopt md:SHA256 \ -pkeyopt hexsecret:ff -pkeyopt hexseed:ff -hexdump
SEE ALSO
genpkey(1), pkey(1), rsautl(1) dgst(1), rsa(1), genrsa(1), EVP_PKEY_CTX_set_hkdf_md(3), EVP_PKEY_CTX_set_tls1_prf_md(3)COPYRIGHT
Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved.Licensed under the OpenSSL license (the ``License''). You may not use this file except in compliance with the License. You can obtain a copy in the file