gcloud_ml-engine_jobs_submit_prediction (1)
NAME
- gcloud ml-engine jobs submit prediction - start a Cloud ML Engine batch prediction job
SYNOPSIS
-
gcloud ml-engine jobs submit prediction JOB --data-format=DATA_FORMAT --input-paths=INPUT_PATH,[INPUT_PATH,...] --output-path=OUTPUT_PATH --region=REGION (--model=MODEL | --model-dir=MODEL_DIR) [--batch-size=BATCH_SIZE] [--labels=[KEY=VALUE,...]] [--max-worker-count=MAX_WORKER_COUNT] [--runtime-version=RUNTIME_VERSION] [--signature-name=SIGNATURE_NAME] [--version=VERSION] [GCLOUD_WIDE_FLAG ...]
DESCRIPTION
POSITIONAL ARGUMENTS
-
- JOB
-
Name of the batch prediction job.
REQUIRED FLAGS
-
- --data-format=DATA_FORMAT
-
Data format of the input files. DATA_FORMAT must be one of:
-
- text
- Text files; see www.tensorflow.org/guide/datasets#consuming_text_data
- tf-record
- TFRecord files; see www.tensorflow.org/guide/datasets#consuming_tfrecord_data
- tf-record-gzip
- GZIP-compressed TFRecord files.
-
- --input-paths=INPUT_PATH,[INPUT_PATH,...]
-
Google Cloud Storage paths to the instances to run prediction on.
Wildcards (*) accepted at the end of a path. More than one path can be specified if multiple file patterns are needed. For example,
- gs://my-bucket/instances*,gs://my-bucket/other-instances1
will match any objects whose names start with instances in my-bucket as well as the other-instances1 bucket, while
- gs://my-bucket/instance-dir/*
will match any objects in the instance-dir "directory" (since directories aren't a first-class Cloud Storage concept) of my-bucket.
- --output-path=OUTPUT_PATH
-
Google Cloud Storage path to which to save the output. Example:
gs://my-bucket/output.
- --region=REGION
-
The Google Compute Engine region to run the job in.
-
Exactly one of these must be specified:
-
- --model=MODEL
-
Name of the model to use for prediction.
- --model-dir=MODEL_DIR
-
Google Cloud Storage location where the model files are located.
-
OPTIONAL FLAGS
-
- --batch-size=BATCH_SIZE
-
The number of records per batch. The service will buffer batch_size number of
records in memory before invoking TensorFlow. Defaults to 64 if not specified.
- --labels=[KEY=VALUE,...]
-
List of label KEY=VALUE pairs to add.
Keys must start with a lowercase character and contain only hyphens (-), underscores (_), lowercase characters, and numbers. Values must contain only hyphens (-), underscores (_), lowercase characters, and numbers.
- --max-worker-count=MAX_WORKER_COUNT
-
The maximum number of workers to be used for parallel processing. Defaults to 10
if not specified.
- --runtime-version=RUNTIME_VERSION
-
Google Cloud ML Engine runtime version for this job. Defaults to a stable
version, which is defined in documentation along with the list of supported
versions:
cloud.google.com/ml-engine/docs/tensorflow/runtime-version-list
- --signature-name=SIGNATURE_NAME
-
The name of the signature defined in the SavedModel to use for this job.
Defaults to DEFAULT_SERVING_SIGNATURE_DEF_KEY in
www.tensorflow.org/api_docs/python/tf/saved_model/signature_constants
which is "serving_default". Only applies to TensorFlow models.
- --version=VERSION
-
Model version to be used.
This flag may only be given if --model is specified. If unspecified, the default version of the model will be used. To list versions for a model, run
- $ gcloud ml-engine versions list
GCLOUD WIDE FLAGS
These flags are available to all commands: --account, --configuration, --flags-file, --flatten, --format, --help, --log-http, --project, --quiet, --trace-token, --user-output-enabled, --verbosity. Run $ gcloud help for details.
NOTES
These variants are also available:
- $ gcloud alpha ml-engine jobs submit prediction $ gcloud beta ml-engine jobs submit prediction