gcloud_alpha_ml-engine_jobs_submit_prediction (1)
NAME
- gcloud alpha ml-engine jobs submit prediction - start a Cloud ML Engine batch prediction job
SYNOPSIS
-
gcloud alpha ml-engine jobs submit prediction JOB --data-format=DATA_FORMAT --input-paths=INPUT_PATH,[INPUT_PATH,...] --output-path=OUTPUT_PATH --region=REGION (--model=MODEL | --model-dir=MODEL_DIR) [--batch-size=BATCH_SIZE] [--labels=[KEY=VALUE,...]] [--max-worker-count=MAX_WORKER_COUNT] [--runtime-version=RUNTIME_VERSION] [--signature-name=SIGNATURE_NAME] [--version=VERSION] [--accelerator-count=ACCELERATOR_COUNT --accelerator-type=ACCELERATOR_TYPE] [GCLOUD_WIDE_FLAG ...]
DESCRIPTION
(ALPHA) Start a Cloud ML Engine batch prediction job.
POSITIONAL ARGUMENTS
-
- JOB
-
- Name of the batch prediction job.
- Name of the batch prediction job.
REQUIRED FLAGS
-
- --data-format=DATA_FORMAT
-
Data format of the input files. DATA_FORMAT must be one of:
-
- text
- Text files; see www.tensorflow.org/guide/datasets#consuming_text_data
- tf-record
- TFRecord files; see www.tensorflow.org/guide/datasets#consuming_tfrecord_data
- tf-record-gzip
- GZIP-compressed TFRecord files.
-
- --input-paths=INPUT_PATH,[INPUT_PATH,...]
-
Google Cloud Storage paths to the instances to run prediction on.
Wildcards (*) accepted at the end of a path. More than one path can be specified if multiple file patterns are needed. For example,
- gs://my-bucket/instances*,gs://my-bucket/other-instances1
will match any objects whose names start with instances in my-bucket as well as the other-instances1 bucket, while
- gs://my-bucket/instance-dir/*
will match any objects in the instance-dir "directory" (since directories aren't a first-class Cloud Storage concept) of my-bucket.
- --output-path=OUTPUT_PATH
-
Google Cloud Storage path to which to save the output. Example:
gs://my-bucket/output.
- --region=REGION
-
The Google Compute Engine region to run the job in.
-
Exactly one of these must be specified:
-
- --model=MODEL
-
Name of the model to use for prediction.
- --model-dir=MODEL_DIR
-
Google Cloud Storage location where the model files are located.
-
OPTIONAL FLAGS
-
- --batch-size=BATCH_SIZE
-
The number of records per batch. The service will buffer batch_size number of
records in memory before invoking TensorFlow. Defaults to 64 if not specified.
- --labels=[KEY=VALUE,...]
-
List of label KEY=VALUE pairs to add.
Keys must start with a lowercase character and contain only hyphens (-), underscores (_), lowercase characters, and numbers. Values must contain only hyphens (-), underscores (_), lowercase characters, and numbers.
- --max-worker-count=MAX_WORKER_COUNT
-
The maximum number of workers to be used for parallel processing. Defaults to 10
if not specified.
- --runtime-version=RUNTIME_VERSION
-
Google Cloud ML Engine runtime version for this job. Defaults to a stable
version, which is defined in documentation along with the list of supported
versions:
cloud.google.com/ml-engine/docs/tensorflow/runtime-version-list
- --signature-name=SIGNATURE_NAME
-
The name of the signature defined in the SavedModel to use for this job.
Defaults to DEFAULT_SERVING_SIGNATURE_DEF_KEY in
www.tensorflow.org/api_docs/python/tf/saved_model/signature_constants
which is "serving_default". Only applies to TensorFlow models.
- --version=VERSION
-
Model version to be used.
This flag may only be given if --model is specified. If unspecified, the default version of the model will be used. To list versions for a model, run
- $ gcloud ml-engine versions list
-
Accelerator Configuration.
-
- --accelerator-count=ACCELERATOR_COUNT
-
The number of accelerators to attach to the machines. Must be >= 1. This flag
must be specified if any of the other arguments in this group are specified.
- --accelerator-type=ACCELERATOR_TYPE
-
The available types of accelerators. ACCELERATOR_TYPE must be one of:
-
- nvidia-tesla-k80
- NVIDIA Tesla K80 GPU
- nvidia-tesla-p100
- NVIDIA Tesla P100 GPU.
This flag must be specified if any of the other arguments in this group are specified.
-
-
GCLOUD WIDE FLAGS
These flags are available to all commands: --account, --configuration, --flags-file, --flatten, --format, --help, --log-http, --project, --quiet, --trace-token, --user-output-enabled, --verbosity. Run $ gcloud help for details.
NOTES
This command is currently in ALPHA and may change without notice. If this command fails with API permission errors despite specifying the right project, you will have to apply for early access and have your projects registered on the API whitelist to use it. To do so, contact Support at cloud.google.com/support These variants are also available:
- $ gcloud ml-engine jobs submit prediction $ gcloud beta ml-engine jobs submit prediction